Context-aware Single-Shot Detector
نویسندگان
چکیده
SSD [18] is one of the state-of-the-art object detection algorithms, and it combines high detection accuracy with real-time speed. However, it is widely recognized that SSD is less accurate in detecting small objects compared to large objects, because it ignores the context from outside the proposal boxes. In this paper, we present CSSD– a shorthand for context-aware single-shot multibox object detector. CSSD is built on top of SSD, with additional layers modeling multi-scale contexts. We describe two variants of CSSD, which differ in their context layers, using dilated convolution layers (DiCSSD) and deconvolution layers (DeCSSD) respectively. The experimental results show that the multi-scale context modeling significantly improves the detection accuracy. In addition, we study the relationship between effective receptive fields (ERFs) and the theoretical receptive fields (TRFs), particularly on a VGGNet. The empirical results further strengthen our conclusion that SSD coupled with context layers achieves better detection results especially for small objects (+3.2%[email protected] on MSCOCO compared to the newest SSD [19]), while maintaining comparable runtime performance.
منابع مشابه
Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network
Single Shot MultiBox Detector (SSD) is one of the fastest algorithms in the current object detection field, which uses fully convolutional neural network to detect all scaled objects in an image. Deconvolutional Single Shot Detector (DSSD) is an approach which introduces more context information by adding the deconvolution module to SSD. And the mean Average Precision (mAP) of DSSD on PASCAL VO...
متن کاملPyramidBox: A Context-assisted Single Shot Face Detector
Face detection has been well studied for many years and one of the remaining challenges is to detect small, blurred and partially occluded faces in uncontrolled environment. This paper proposes a novel context-assisted single shot face detector, named PyramidBox, to handle the hard face detection problem. Observing the importance of the context, we improve the utilization of contextual informat...
متن کاملDSSD : Deconvolutional Single Shot Detector
The main contribution of this paper is an approach for introducing additional context into state-of-the-art general object detection. To achieve this we first combine a state-ofthe-art classifier (Residual-101 [14]) with a fast detection framework (SSD [18]). We then augment SSD+Residual101 with deconvolution layers to introduce additional largescale context in object detection and improve accu...
متن کاملFeasibility of Active Sandwich Detectors for Single-Shot Dual-Energy Imaging∗
We revisit the doubly-layered sandwich detector con guration for single-shot dual-energy x-ray imaging. In order to understand its proper operation, we investigated the contrast-to-noise performance in terms of the x-ray beam setup using the Monte Carlo methods. Using a pair of active photodiode arrays coupled to phosphor screens, we have built a sandwich detector. For better spectral separatio...
متن کاملWeaving Multi-scale Context for Single Shot Detector
Aggregating context information from multiple scales has been proved to be effective for improving accuracy of Single Shot Detectors (SSDs) on object detection. However, existing multi-scale context fusion techniques are computationally expensive, which unfavorably diminishes the advantageous speed of SSD. In this work, we propose a novel network topology, called WeaveNet, that can efficiently ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.08682 شماره
صفحات -
تاریخ انتشار 2017